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Self-Organized Criticality Simulation (SocSim)
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Project is created as part of subject: Team student projects Faculty of Physics [https://sites.google.com/a/uw.edu.pl/zps/]

Programs in Python that simulate dynamical systems that have a critical point as an attractor. So called self-organized criticality(SOC) [https://en.wikipedia.org/wiki/Self-organized_criticality]


1. Theoretical problem description

Self-organized criticality wiki [https://en.wikipedia.org/wiki/Self-organized_criticality]:


In physics, self-organized criticality (SOC) is a property of dynamical systems that have a critical point as an attractor. Their macroscopic behavior thus displays the spatial or temporal scale-invariance characteristic of the critical point of a phase transition, but without the need to tune control parameters to a precise value, because the system, effectively, tunes itself as it evolves towards criticality.





The concept was put forward by Per Bak, Chao Tang and Kurt Wiesenfeld (“BTW”) in a paper published in 1987 in Physical Review Letters, and is considered to be one of the mechanisms by which complexity arises in nature. Its concepts have been enthusiastically applied across fields as diverse as geophysics, physical cosmology, evolutionary biology and ecology, bio-inspired computing and optimization (mathematics), economics, quantum gravity, sociology, solar physics, plasma physics, neurobiology and others.





SOC is typically observed in slowly driven non-equilibrium systems with a large number of degrees of freedom and strongly nonlinear dynamics. Many individual examples have been identified since BTW’s original paper, but to date there is no known set of general characteristics that guarantee a system will display SOC.







2. Program structure, installation and use cases


2.1 Project folder structure

Project folder structure is inspired by these sources:
sources1 [https://stackoverflow.com/questions/193161/what-is-the-best-project-structure-for-a-python-application]
source2 [https://dev.to/codemouse92/dead-simple-python-project-structure-and-imports-38c6] and Kwant [https://kwant-project.org/] project.


socsim:


	docsrc - holds Sphinx [http://www.sphinx-doc.org/en/master/] scripts used for documentation generation.


	docs - GitHub configuration folder [https://help.github.com/en/articles/configuring-a-publishing-source-for-github-pages], which holds web-page [https://github.com/SocSIM/SocSIM] of project.


	resource - Non executable files.


	results - folder used for holding results of simulation, Jupiter notebooks and different use cases.


	SOC - main project folder, which holds all source code.


	models - contains different SOC models, like: Abelian sandpile model, forest-fire model, etc..


	common - common code between all models


	tests - unit tests of code













2.2 Installation and dependencies


Dependencies

Mostly numerical libraries, visualsation, web page generation etc.
For whole list take a look at requirements.txt






2.3 Use cases


Running program

Program is designed in next way:


	Framework part - placed under SOC folder.


	Research part - consists of jupyter notebooks(which can be easily deployed to web-page) and is placed under research folder







Developing the program

use python setup.py develop to install a basic set of dependencies and link the package to be importable in your current Python environment.




Running test cases

To make folder SOC an import package, run only once:

python setup.py develop





After that, simply use pytest SOC to automatically find and execute all existing test cases.




Web-page generation

Web page is generated using Sphinx library.

Under terminal enter into docsrc folder and type:

make html





Web-page will be generated into ./docsrc/build/html folder.
If you want to update web-page, copy generated web-page into /docs folder.








Results

Click the model’s name for more examples:


BTW [https://socsim.readthedocs.io/en/latest/BTW.html]

[image: results/power_law_btw.png]power-law




Manna model(Abelian/non-Abelian) [https://socsim.readthedocs.io/en/latest/Manna_example.html]

[image: results/manna_exmpl.png]mannaexample




OFC [https://socsim.readthedocs.io/en/latest/OFC.html]

[image: results/ofc_exmpl2.png]ofcexample




Forest fire [https://socsim.readthedocs.io/en/latest/ForestFire.html]






Summary of intial goals:


	Make wide coverage of all self-organized criticality models.


	Figuring out the best algorithms.


	Easy scaling on many processors machine(multithreading, GPGPU [https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units], CUDA, numba [http://numba.pydata.org/]).






	Using some best practice of programming:


	Coding conventions [https://en.wikipedia.org/wiki/Coding_conventions]


	Unit Tests.


	Creation of common modules.


	Automatic documentation generation.


	Readability of code and easy of use(between clarity and speed, we should choose clarity).









0.2 Commitments

Here are described code formatting style and other conventions, to make code more uniform. Also this section is for newcomers and contributors.


Unit Tests

SocSim uses the lovely PyTest [https://docs.pytest.org/en/latest/] for its unit testing needs. Tests are run automatically on every commit using TravisCI.




Documentation

Most popular documentation generator for Python - Sphinx [http://www.sphinx-doc.org/en/master/]. Good tutorial about using Sphinx here [https://sphinx-tutorial.readthedocs.io/]. Here [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html] is example of good Google style docstring standardized by PEP-484.

pip install -U sphinx
pip install sphinx_rtd_theme
pip install nbsphinx





pandoc [https://pandoc.org/installing.html]

Dependencies of sphinx: recommonmark.








What’s next?


	How we can apply Keras [https://github.com/keras-team/keras]? Predictions, finding hidden parameters, etc.


	More tests for the batch processes running (Dask)


	Convenient selection of different boundary conditions of a system (lattice)


	Parametrization of the earthquake model for the coverage of wider selection of submodels (by including eg.: drive with random loading, toppling to the neighbours in a specific state (crack model), delay of the fracture initiation, threshold for the fracture propagation) like in Lomnitz-Adler (1993) [https://doi.org/10.1029/93JB01390]


	Database of the simulations







3. Links/References


	Bak, P., Tang, C. and Wiesenfeld, K. (1987). “Self-organized criticality: an explanation of 1/f noise”. Physical Review Letters. 59 (4): 381–384. Bibcode:1987PhRvL..59..381B. doi:10.1103/PhysRevLett.59.381. PMID 10035754. Papercore summary: http://papercore.org/Bak1987.


	Abelian sandpile model [https://en.wikipedia.org/wiki/Abelian_sandpile_model]


	Forest-fire model [https://en.wikipedia.org/wiki/Forest-fire_model]


	Theoretical Models of Self-Organized Criticality (SOC) Systems [https://arxiv.org/abs/1204.5119]


	Pink noise [https://en.wikipedia.org/wiki/Pink_noise]


	Introduction to Self-Organized Criticality & Earthquakes [http://www2.econ.iastate.edu/classes/econ308/tesfatsion/SandpileCA.Winslow97.htm]


	25 Years of Self-Organized Criticality: Solar and Astrophysics [https://arxiv.org/pdf/1403.6528.pdf]


	SOC computer simulations [https://arxiv.org/abs/1301.2918]


	Studies in self-organized criticality [http://wwwf.imperial.ac.uk/~pruess/publications/thesis_final/thesis_book.pdf]






	Theoretical Models of SOC Systems [https://arxiv.org/pdf/1204.5119.pdf]










          

      

      

    

  

    
      
          
            
  


Manna model

The Manna model is similar in concept to the BTW model. However, where BTW dissipates its “sand grains” deterministically, the Manna model introduces some randomness. Let’s take a look:


[3]:






from SOC import Manna
model = Manna(L=3, save_every=1)
model.critical_value








[3]:







1






This means that the model begins toppling its “sandpiles” once we put two grains somewhere. Let’s try that:


[20]:






model = Manna(L=3, save_every=1)
model.values[2,2] = 2
model.plot_state(with_boundaries=True);
model.AvalancheLoop()
model.plot_state(with_boundaries=True);












[image: _images/Manna_example_4_0.png]









[image: _images/Manna_example_4_1.png]




Why these two target locations in particular? It actually is random! Let’s rerun that:


[21]:






model = Manna(L=3, save_every=1)
model.values[2,2] = 2
model.plot_state(with_boundaries=True);
model.AvalancheLoop()
model.plot_state(with_boundaries=True);












[image: _images/Manna_example_6_0.png]









[image: _images/Manna_example_6_1.png]





[22]:






model = Manna(L=3, save_every=1)
model.values[2,2] = 2
model.plot_state(with_boundaries=True);
model.AvalancheLoop()
model.plot_state(with_boundaries=True);












[image: _images/Manna_example_7_0.png]









[image: _images/Manna_example_7_1.png]




Oh, that’s a bit weird, isn’t it? These seem to have moved awfully far. The trick is that the two grains that fall from the toppling location pick their location at random independently, and here they both picked (1, 1) at first.

Let’s run it for some more time:


[25]:






model = Manna(L=5, save_every=1)
model.run(1000)
model.animate_states(notebook=True)













Waiting for wait_for_n_iters=10 iterations before collecting data. This should let the system thermalize.
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Olami–Feder–Christensen (OFC) Earthquake Model

Olami Z., Feder H., Christensen K., Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68, 1992, https://doi.org/10.1103/PhysRevLett.68.1244

modified as in eqns (1) from: Grassberger P., 1994. Efficient large-scale simulations of a uniformly driven system, Phys. Rev. E, 49, 2436–2444, https://doi.org/10.1103/PhysRevE.49.2436


[2]:






from SOC.models import OFC








[3]:






sim0 = OFC(conservation_lvl=0.2, L=30, save_every = 1)
sim0.run(1000, wait_for_n_iters=1000)













Waiting for wait_for_n_iters=1000 iterations before collecting data. This should let the system thermalize.






























[4]:






sim0.animate_states(notebook=True)
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The BAK–TANG–WIESENFELD Sandpile

source [http://93.174.95.29/_ads/F7595E1E9FFC863A0D77117778C3E77C] page 85


General features


	First published by Bak, Tang, and Wiesenfeld (1987).


	Motivated by avalanching behaviour of a real sandpile.


	In one dimension rules represent downward movement of sand grains.


	Defined in any dimension, exactly solved (trivial) in one.


	Stochastic (bulk) drive, deterministic relaxation.


	Non-Abelian in its original definition.


	Many results actually refer to Dhar’s (1990a) Abelian sandpile, Sec. 4.2.


	Simple scaling behaviour disputed, multiscaling proposed.


	Exponents listed in Table 4.1, p. 92, are for the Abelian BTW Model.







Rules


	d dimensional (usually) hyper-cubic lattice and q the coordination number (on cubic lattices q = 2d).


	Choose (arbitrary) critical slope z^c = q − 1.


	Each site n ∈ {1,…, L}^d has slope z_n.


	Initialisation: irrelevant, model studied in the stationary state.


	Driving: add a grain at n0 chosen at random and update all uphill nearest neighbours n‘0 of n0: z_n0 →z_n0 + q/2 z_n0 →z_n‘0 − 1.


	Toppling: for each site n with z_n > z^c distribute q grains among its nearest neighbours n’ : z_n →z_n − q ∀n’.nn.n z_n →z_n + 1. In one dimension site n = L relaxes according to z_L → z_L − 1 z_L−1 → z_L−1 + 1.


	Dissipation: grains are lost at open boundaries.


	Parallel update: discrete microscopic time, sites exceeding zc at time t topple at t + 1 (updates in sweeps).


	Separation of time scales: drive only once all sites are stable, i.e. z_n ≤ z^c (quiescence).


	Key observables (see Sec. 1.3): avalanche sizes, the total number of topplings until quiescence; avalanche duration T , the total number of parallel updates until quiescence





[20]:






from SOC.models import BTW










Empty model


[21]:






b = BTW(L = 50, save_every = 50)










Running model


[22]:






b.run(200000, wait_for_n_iters = 100)













Waiting for wait_for_n_iters=100 iterations before collecting data. This should let the system thermalize.






























[23]:






b.data_df.describe()








[23]:
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Forest fire model


[1]:






from SOC.models import Forest













/progs/miniconda3/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  import pandas.util.testing as tm







[2]:






T chance_of_thunder = 0.001
model = Forest(p=0.04, f=chance_of_thunder, L=50, save_every = 1)

model.plot_state(False)








[2]:






[image: _images/ForestFire_2_0.png]









[image: _images/ForestFire_2_1.png]





[3]:






model.run(1000, wait_for_n_iters=1000)













Waiting for wait_for_n_iters=1000 iterations before collecting data. This should let the system thermalize.






























	0 - ash


	1 - tree


	2 - burning





[4]:






model.animate_states(notebook=True, interval=100)
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Input/Output


Saving state of simulation

implementaion is based on zarr [https://zarr.readthedocs.io/en/stable] library


[1]:






from SOC.models import BTW

a = BTW(15)
a.run(100)
a.plot_state()
root = a.save()
root.tree()













100%|██████████| 100/100 [00:03<00:00, 26.37it/s]







[1]:







	/	values (17, 17) int32















[image: _images/IO_1_2.svg]




[10]:






import zarr
read = zarr.open_group('state/sim.zarr', mode = 'r')
read.tree()








[10]:







	/	values (17, 17) int32











[11]:






read.attrs.keys()








[11]:







dict_keys(['L', 'save_every'])







[12]:






print(read.attrs['L'], " -  ", read.attrs['save_every'])













15 -100









Values is empty array?


[13]:






read['values'][:]








[13]:







array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])







[14]:






c = BTW(16)
c.run(100)
c.plot_state();













100%|██████████| 100/100 [00:00<00:00, 6334.66it/s]











[image: _images/IO_7_1.svg]




[15]:






c.open('sim')








[16]:






c.plot_state();
a.plot_state();












[image: _images/IO_9_0.svg]








[image: _images/IO_9_1.svg]




[9]:






def save(self, file_name = 'sim'):
        """ serialization of object and saving it to file"""

        root = zarr.open_group('state/' + file_name + '.zarr', mode = 'w')
        values = root.create_dataset('values', shape = (self.L_with_boundary, self.L_with_boundary), chunks = (10, 10), dtype = 'i4')
        values = zarr.array(self.values)
        #data_acquisition = root.create_dataset('data_acquisition', shape = (len(self.data_acquisition)), chunks = (1000), dtype = 'i4')
        #data_acquisition = zarr.array(self.data_acquisition)
        root.attrs['L'] = self.L
        root.attrs['save_every'] = self.save_every

        return root

def open(self, file_name = 'sim'):
        root = zarr.open_group('state/' + file_name + '.zarr', mode = 'r')
        self.values = np.array(root['values'][:])
        self.data_acquisition = root['data_acquisition'][:]
        self.L = root.attrs['L']
        self.save_every = root.attrs['save_every']








[ ]:
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RSOC


Mesa Tutorial


[1]:






from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid
import numpy as np
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner

# For a jupyter notebook add the following line:
%matplotlib inline

# The below is needed for both notebooks and scripts
import matplotlib.pyplot as plt








[2]:






class MoneyAgent(Agent):
    """Agent with fixed intial wealth"""

    def __init__(self, unique_id, model):
        super().__init__(unique_id, model)
        self.wealth = 1

    def move(self):
        possible_steps = self.model.grid.get_neighborhood(
            self.pos,
            moore = True,
            include_center = False
        )
        new_position = self.random.choice(possible_steps)
        self.model.grid.move_agent(self, new_position)

    def give_money(self):
        cellmates = self.model.grid.get_cell_list_contents([self.pos])
        if len(cellmates) > 1:
            self.wealth -= 1
            other = self.random.choice(cellmates)
            other.wealth += 1

    def step(self):
        self.move()
        if self.wealth > 0:
            self.give_money()








[5]:






def compute_gini(model):
    agent_wealths = [agent.wealth for agent in model.schedule.agents]
    x = sorted(agent_wealths)
    N = model.num_of_agents
    B = sum( xi * (N-i) for i, xi in enumerate(x) ) / (N*sum(x))
    return (1 + (1/N) - 2*B)

class MoneyModel(Model):
    """A model with some number of agents"""

    def __init__(self, N, width, height):
        super().__init__()
        self.num_of_agents = N
        self.grid = MultiGrid(width, height, True)
        self.schedule = RandomActivation(self)
        self.running = True

        for i in range(self.num_of_agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)

            x = self.random.randrange(self.grid.width)
            y = self.random.randrange(self.grid.height)
            self.grid.place_agent(a, (x, y))

        self.datacollector = DataCollector(
            model_reporters = {"Gini": compute_gini},
            agent_reporters = {"Wealth": "wealth"})

    def plot_state(self):
        agent_counts = np.zeros((self.grid.width, self.grid.height))
        for cell in self.grid.coord_iter():
            cell_content, x, y = cell
            agent_count = len(cell_content)
            agent_counts[x][y] = agent_count
        plt.imshow(agent_counts, interpolation='nearest')
        plt.colorbar()

    def plot_histogram(self):
        agent_wealth = [a.wealth for a in self.schedule.agents]
        plt.hist(agent_wealth)

    def step(self):
        """advance the model by one step"""
        self.datacollector.collect(self)
        self.schedule.step()








[23]:






mdl = MoneyModel(50, 10, 10)
for i in range(1000):
    if i%500 == 0:
        print(i)
    mdl.step()













0
500







[24]:






mdl.plot_state()












[image: _images/RSOC_6_0.svg]




[25]:






mdl.plot_histogram()












[image: _images/RSOC_7_0.svg]




[26]:






gini = mdl.datacollector.get_model_vars_dataframe()
gini.plot()








[26]:







<matplotlib.axes._subplots.AxesSubplot at 0x1f3f3b32438>











[image: _images/RSOC_8_1.svg]




[27]:






agent_wealth = mdl.datacollector.get_agent_vars_dataframe()
agent_wealth.head()








[27]:
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API Overview


	
class SOC.common.simulation.Simulation(L: int, save_every: int = 1, wait_for_n_iters: int = 10)

	Base class for SOC simulations.


	Parameters

	
	L (int) – linear size of lattice, without boundary layers


	save_every (int or None) – number of iterations per snapshot save


	wait_for_n_iters (int) – How many iterations to skip to skip before saving data?









	
AvalancheLoop() → dict

	Bring the current simulation’s state to equilibrium by repeatedly
toppling and dissipating.

Returns a dictionary with the total size of the avalanche
and the number of iterations the avalanche took.


	Return type

	dict










	
L_with_boundary

	The total width of the simulation grid, with boundaries.






	
animate_states(notebook: bool = False, with_boundaries: bool = False, interval: int = 30)

	Animates the collected states of the simulation.


	Parameters

	
	notebook (bool) – if True, displays via html5 video in a notebook;
otherwise returns MPL animation


	with_boundaries (bool) – include boundaries in the animation?


	interval (int) – number of miliseconds to wait between each frame.













	
classmethod clean_boundary_inplace(array: numpy.ndarray) → numpy.ndarray

	Convenience wrapper to common.clean_boundary_inplace with the simulation’s boundary size.


	Parameters

	array (np.ndarray) – array to clean



	Return type

	np.ndarray










	
data_df

	Displays the gathered data as a Pandas DataFrame.


	Returns

	dataframe with gathered data



	Return type

	pandas.DataFrame










	
drive()

	Drive the simulation by adding particles from the outside.

Must be overriden in subclasses.






	
classmethod from_file(filename: str)

	Loads simulation state from a saved one.


	Parameters

	filename (str) – Filename to be loaded.



	Returns

	simulation object, of the subclass you used



	Return type

	Simulation










	
get_exponent(column: str = 'AvalancheSize', low: int = 1, high: int = 10, plot: bool = True, plot_filename: Optional[str] = None) → dict

	Plot histogram of gathered data from data_df,


	Parameters

	
	column (str) – which column of data_df should be visualized?


	low (int) – lower cutoff for log-log-linear fit


	high (int) – higher cutoff for log-log-linear fit


	plot (bool) – if False, skips all plotting and just returns fit parameters


	plot_filename (bool) – optional filename for saved plot. This skips displaying the plot!






	Returns

	fit parameters



	Return type

	dict










	
classmethod inside(array: numpy.ndarray) → numpy.ndarray

	Convenience function to get an array without simulation boundaries


	Parameters

	array (np.ndarray) – array



	Returns

	array of width smaller by 2BC



	Return type

	np.ndarray










	
plot_state(with_boundaries: bool = False) → matplotlib.figure.Figure

	Plots the current state of the simulation.


	Parameters

	with_boundaries (bool) – should the boundaries be displayed as well?



	Returns

	figure with plot



	Return type

	plt.Figure










	
run(N_iterations: int, filename: str = None, wait_for_n_iters: int = 10) → str

	Simulation loop. Drives the simulation, possibly starts avalanches, gathers data.


	Parameters

	
	N_iterations (int) – number of iterations (per grid node if scale is True)


	filename (str) – filename for saving snapshots. if None, saves to memory; by default if False, makes something like array_Manna_2019-12-17T19:40:00.546426.zarr


	wait_for_n_iters (int) – wait this many iterations before collecting data
(lets model thermalize)






	Return type

	dict










	
save(file_name='sim')

	serialization of object and saving it to file






	
size

	The total size of the simulation grid, without boundaries






	
topple_dissipate()

	Distribute material from overloaded sites to neighbors.

Must be overriden in subclasses.










	
class SOC.models.BTW(*args, **kwargs)

	Implements the BTW model.


	Parameters

	L (int) – linear size of lattice, without boundary layers






	
drive(num_particles: int = 1)

	Drive the simulation by adding particles from the outside.


	Parameters

	num_particles (int) – How many particles to add per iteration (by default, 1)










	
topple_dissipate() → int

	Distribute material from overloaded sites to neighbors.

Convenience wrapper for the numba.njitted topple function defined in manna.py.


	Return type

	int














	
class SOC.models.Forest(p: float = 0.05, f: float = 0, *args, **kwargs)

	Forest fire model


	Parameters

	
	f – probability of thunder setting a tree on fire; set 0 to disable lighting


	p (float) – probability of a new tree growh per empty cell









	
drive()

	Does nothing in FF!






	
topple_dissipate() → int

	Forest burning and turning into ash.










	
class SOC.models.Manna(critical_value: int = 1, abelian: bool = True, *args, **kwargs)

	Implements the Manna model.


	
drive(num_particles: int = 1)

	Drive the simulation by adding particles from the outside.


	Parameters

	num_particles (int) – How many particles to add per iteration (by default, 1)










	
topple_dissipate() → int

	Distribute material from overloaded sites to neighbors.

Convenience wrapper for the numba.njitted topple_dissipate function defined in manna.py.


	Returns

	number of iterations it took to



	Return type

	bool














	
class SOC.models.OFC(critical_value: float = 1.0, conservation_lvl: float = 0.25, *args, **kwargs)

	Implements the OFC model.


	Parameters

	
	L (int) – linear size of lattice, without boundary layers


	critical_value (float) – 1.0 by default - above this value, nodes start toppling.
At  0.25 -> full force distributed (if 4 neighbours)


	conservation_lvl (float) – 0.25 by default - fraction of the force from a toppling site going to its neighbour









	
AvalancheLoop() → dict

	Bring the current simulation’s state to equilibrium by repeatedly
toppling and dissipating.

Returns a dictionary with the total size of the avalanche
and the number of iterations the avalanche took.


	Return type

	dict










	
drive()

	Drive the simulation by adding force from the outside.






	
topple_dissipate() → int

	Distribute material from overloaded sites to neighbors.

Convenience wrapper for the numba.njitted topple function defined in ofc.py.


	Return type

	int
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